
Fiea Game Engine
Logan Harvell

Summary

◦ Fiea Game Engine is a property-centric game engine

◦ Supports Windows and Linux projects using Visual Studio

◦Data-driven game development using JSON as a

configuration language to describe game objects

◦Hierarchically structured game objects

◦Rendering abstraction layer currently in development

Core Inheritance Hierarchy

Entity Ownership

◦ The World class acts as the root Entity and manages state and resources
◦ Contains the WorldState, used to pass the state down the ownership hierarchy

◦ Contains Run, Update, and Stop methods for managing the game loop

◦ Top level Entity object contained in World can be considered a “level”
◦ They contain a hierarchy of objects that will updated during the game loop

◦ They can be loaded/unloaded from the World as needed

Transform Class

◦ Stores these components:

◦ Translation, a vector (glm::vec3)

◦ Rotation, a quaternion (glm::quat)

◦ Scale, a vector (glm::vec3)

◦ Easy access to each component without requiring matrix

decomposition

◦ Simple transformations only require basic vector arithmetic,

preventing unnecessary matrix multiplication

◦ Matrix compositions are cached to reduce unnecessary matrix

multiplications even further

Containers
◦ Three foundational containers and a container adaptor based on STL

◦ SList, a singly linked list

◦ Vector, a dynamic array

◦ HashMap, a hash table with key-data pairs

◦ Keys are hashed for an index into a Vector

◦ At each index is an SList chain, storing key-data pairs

◦ Stack

◦ Container adaptor representing a LIFO stack with Push, Pop, and Top methods

◦ The adapted container is specified by a template parameter, defaulted to Vector

◦ Datum
◦ A dynamic array whose type can be defined at run-time

◦ Multiple types are supported through a discriminated union

◦ Includes int, float, vec4, mat4x4, and references to Scope, RTTI, or other Datum

◦ Int, float, vec4, and mat4x4 can are also optionally stored as references

Run-time Type Reflection System
◦ Scope

◦ Represents a table of string keys with runtime definable types, dubbed “Attributes”

◦ Implemented as a HashMap of std::string Keys mapped to Datum instances

◦ RTTI
◦ Stores a unique integer ID for each derived class type

◦ Enables run-time type information queries

◦ Includes TypeId getters, Is/As methods, a virtual constructor, Base type definition, etc.

◦ TypeManager, registry mapping class types to attribute signatures

◦ Attributed
◦ Base class derived from Scope for registering and exposing attributes

◦ Class attribute signatures are registered with the TypeManager

◦ Registering signatures allows derived classes to inherit parent attributes

◦ Attributes can reference class data members, reflecting the class data structure

Data-Driven Development
◦ Factory, using the abstract factory pattern

◦ Related classes are registered under a base class factory

◦ Enables creation of any related class at runtime using a string identifier, a “class name”

◦ JSON Parser, using the chain-of-responsibility pattern

◦ ParseMaster, class that manages parsing a SharedData

◦ SharedData, an embedded class that wraps data to be filled with parsed data

◦ ParseHelper, a helper class that handles one or more specific parsing cases, i.e. parsing Entity

◦ JSON configuration files

◦ Uses JsonParseMaster with a JsonParseHelper implementation for Entity objects

◦ Allows JSON to be used as a configuration file to describe any Entity derived object

◦ Uses the factory pattern to create instances of derived classes

◦ Can be used to load any Entity from a file, i.e. the World instance, or a “level”

◦ Entities can also be re-parsed at runtime to “hot reload” or add attributes

Hot Reloading the Solar System

Hot Reloading the Solar System

Event System
◦ IEventSubscriber, interface for event subscribers

◦ Subscribers implement Notify to respond to an Event

◦ Notify takes a single EventPublisher parameter

◦ EventPublisher, event Base class

◦ Publish method calls Notify on all Event subscribers

◦ Passes itself in as parameter for each Notify call

◦ Event
◦ Static methods manage adding/removing subscribers

◦ Contains a single data member as a message

◦ Message type specified by a template parameter

◦ EventQueue, manages publishing Events

◦ Adds Event instances to a queue with optional delay

◦ On Update, iterates through queue and calls Publish on any expired Event

◦ EventQueue can also be used to directly Publish an Event

Models and Asset Management

◦ Model
◦ Mesh, the physical geometry

◦ ModelMaterial, a texture stack for
the model

◦ AnimationClip, an animation
sequence

◦ Bone, a vertex offset within a
skeleton of a model used for animat
ion

◦ SceneNode, a single node in a
weighted hierarchy that makes up
a skeleton

Current Work

◦ Extending the engine to support the integration of multiple rendering API

◦ An abstraction layer for rendering is being designed as an interface that can

be implemented by any rendering API, i.e. OpenGL, Vulkan, DirectX11/12, and

Metal

◦ This simplifies extending the engine to support specific or multiple different

rendering API as needed to best support the end application and target

platforms

◦ The goal is a demo of a dynamic scene rendered using the rendering

abstraction layer with an implementation first using OpenGL and DirectX11

Rendering Manager

◦ Interface that declares structs and pure

virtual method prototypes for wrapping

rendering API data types and functionality

◦ Implementations of the interface using a

rendering API isolate the dependency

◦ World maintains a reference to the current

RenderingManager instance in the

WorldState

◦ This gives the Entity hierarchy access to the

rendering interface without dependencies

Conclusion

◦ If you would like to follow along with this project, you can…

◦ Head to my blog for frequent updates on the progress of the rendering
abstraction layer

◦ And/or subscribe to the RSS feed

◦ For more information on the game engine itself, you can…

◦ Head to the Fiea Game Engine posting on my website

◦ Or explore the source code on GitHub

◦ Otherwise, feel free to find all the above and more about my musings

and tinkerings at https://logantharvell.github.io/

https://logantharvell.github.io/blog/
https://logantharvell.github.io/feed.xml
https://logantharvell.github.io/fiea-game-engine/
https://github.com/LoganTHarvell/FieaGameEngine
https://logantharvell.github.io/

